PAPER 1

Bones – Identification and Functions

- Identification: Learn about the different bones in the human body. Examples: skull, femur, ribs.
- **Functions:** Bones support the body, protect organs, help with movement, store minerals, and produce blood cells.

Structure of the Skeleton - Shape/Purpose

- **Shape:** The skeleton is made up of bones and cartilage. It's structured to support the body's weight and allow movement.
- **Purpose:** Provides a framework for the body, protects organs, and works with muscles for movement.

Muscles - Identification

- Muscle types: Skeletal (attached to bones), smooth (found in organs), and cardiac (found in the heart).
- Focus on identifying major skeletal muscles like biceps, quadriceps, and hamstrings.

Structure and Components of a Synovial Joint (+ Tendons)

- Synovial Joint: A joint that allows free movement (like the knee or elbow).
- **Components:** Synovial fluid (lubricates the joint), articular cartilage (reduces friction), ligaments (hold bones together), and tendons (connect muscles to bones).

Types of Synovial Joints – 2 Main

- 1. **Ball and Socket (e.g., shoulder, hip):** Allows circular movement.
- 2. Hinge (e.g., knee, elbow): Allows back-and-forth movement.

Movement at Joints

- Flexion: Decreasing the angle at a joint.
- Extension: Increasing the angle at a joint.
- Abduction: Moving away from the body.
- Adduction: Moving toward the body.

Muscle Movements - Agonist/Antagonist, Isometric/Isotonic

Agonist: The muscle that contracts to create movement (e.g., bicep during a bicep curl).

- Antagonist: The muscle that relaxes as the agonist contracts (e.g., tricep during a bicep curl).
- Isometric: Muscle contraction without movement.
- Isotonic: Muscle contraction with movement.

Pathway of Air

- 1. Air enters through the **mouth/nose**.
- 2. Moves through the trachea.
- 3. Into the **bronchi**, then the **bronchioles**.
- 4. Reaches the **alveoli** (where gas exchange happens).

Gaseous Exchange

 Happens in the alveoli of the lungs. Oxygen moves into the blood, and carbon dioxide moves out of the blood into the alveoli to be exhaled.

Blood Vessels - Structure

- Arteries: Thick walls, carry blood away from the heart.
- Veins: Thinner walls, carry blood to the heart.
- Capillaries: Very thin walls, allow gas and nutrient exchange.
- Vasoconstriction/Vasodilation

Structure of the Heart

- Chambers: 4 chambers—2 atria and 2 ventricles.
- Valves: Ensure blood flows in one direction.
- Arteries: Carry blood away from the heart (e.g., aorta).

Cardiac Cycle

• Describes how the heart pumps blood: the atria contract, then the ventricles contract, sending blood to the lungs and the rest of the body.

CO, SV, HR

- CO (Cardiac Output): Amount of blood the heart pumps per minute.
- SV (Stroke Volume): Amount of blood pumped with each beat.
- HR (Heart Rate): Number of heartbeats per minute.

Mechanics of Breathing - Inhale/Exhale, Changes Through Exercise

- Inhale: Diaphragm contracts, lungs expand, air enters.
- Exhale: Diaphragm relaxes, lungs contract, air is pushed out.
- During exercise, breathing rate and volume increase to supply muscles with more oxygen.

Spirometer Trace – Draw & Interpret

- Learn to read a spirometer, which measures lung volume and airflow.
- Understand the different stages like tidal volume, inspiratory reserve, etc.

Aerobic vs Anaerobic Exercise

- Aerobic Exercise: Requires oxygen, e.g., running. Equation: Glucose + Oxygen → Energy + Carbon Dioxide + Water.
- Anaerobic Exercise: No oxygen required, e.g., sprinting. Equation: Glucose → Energy + Lactic Acid.
- AO3 Justification for different sports: Aerobic is good for endurance, anaerobic for short bursts of power.

EPOC (Excess Post-Exercise Oxygen Consumption)

Refers to the extra oxygen needed after exercise to help the body recover.

Recovery from Exercise (AO3 - evaluate these methods)

- Cool Down: Prevents muscle stiffness.
- **Diet Manipulation:** Replenishes energy stores.
- Ice Bath: Reduces muscle soreness.
- Massage: Helps with relaxation and circulation.
- Evaluate each method's effectiveness for different athletes.

Immediate, Short and Long-Term Effects of Exercise

- **Immediate:** Increased heart rate, breathing rate, and muscle temperature.
- Short-Term: Muscle fatigue, soreness.
- Long-Term: Improved cardiovascular health, muscle strength, and endurance.

1st, 2nd, and 3rd Class Levers - Identify in the Body

- 1st Class: Fulcrum in the middle (e.g., neck).
- 2nd Class: Load in the middle (e.g., calf raises).
- **3rd Class:** Effort in the middle (e.g., bicep curl).

Mechanical Advantage

The ability to lift a larger load with less effort, typically seen in 2nd-class levers.

Analysis of Basic Movements in Sports

- Sally Took Somersault, RUNNING (Sagittal Plane, Transverse Axis)
- Fred's Stick Star jump, GK save in football (Frontal Plane, Sagittal Axis)
- **To London** Ice skating spin (Transverse Plane, Longitudinal Axis)

Health and Fitness – Definitions & Relationships

- Health: Being free from illness.
- **Fitness:** The ability to perform physical activities.
- These are related because good health often leads to better fitness, and fitness helps maintain health.

Components of Fitness

- Strength, Flexibility, Endurance, Speed, Power, Agility, Balance, Coordination.
- AO3 Justify why each component is/ is not important for different sports (e.g., flexibility for gymnastics, strength for football).

Fitness Testing

- **Tests:** Include the beep test, sit-up test, vertical jump.
- AO3 Evaluate the relevance of the tests: Testing helps assess fitness, but can be influenced by factors like motivation.

Principles of Training - SPORT/FITT

- S: Specificity
- **P:** Progression
- O: Overload
- R: Reversibility
- **T**: Tedium
- **FITT:** Frequency, Intensity, Time, Type.

Types/Methods of Training A03 - evaluate/discuss appropriateness of method for different sports/ identified athlete

- Continuous Training: Steady, moderate intensity (good for endurance).
- Interval Training: Alternating between high and low intensity (good for power).
- Weight Training: Builds strength.

Training Intensity & Zones

- Training Zones: Aerobic (60-80% max HR), Anaerobic (80-90% max HR).
- 1 Rep Max: Used to determine strength training loads.

Considerations to Prevent Injury

• Warm up, cool down, use correct technique, and avoid overtraining.

Altitude Training

- Benefits: Increases red blood cell count.
- Limitations: May cause dehydration or altitude sickness.

Warm-Up and Cool-Down

- Warm-up: Increases blood flow and prepares muscles for exercise.
- Cool-down: Helps the body return to resting state and prevents injury.

Use of Data - Quantitative and Qualitative

- Quantitative: Numerical data (e.g., time, distance).
- Qualitative: Descriptive data (e.g., how the athlete feels).
- Learn how to draw and interpret data.

PAPER 2

Linking Physical Activity to Wellbeing

- Physical Wellbeing: Exercise improves cardiovascular health, muscle strength, and flexibility.
- Mental Wellbeing: Physical activity can reduce stress, improve mood, and boost mental health by releasing endorphins.
- Social Wellbeing: Participating in physical activity can build social connections, teamwork, and improve confidence.

Benefits of Physical Activity on Fitness

- Improves cardiovascular fitness, muscular strength, flexibility, and muscular endurance.
- Enhances overall wellbeing, helping with stress management and weight control.

Consequences of a Sedentary Lifestyle

- Can lead to weight gain, poor cardiovascular health, and muscle weakness.
- Increases the risk of diabetes, hypertension, and mental health problems like anxiety and depression.

Obesity - Effects on Performance

- Physical Health: Limits endurance, flexibility, and strength. Can increase the risk of joint problems.
- Mental Health: May reduce confidence and motivation.
- Social Health: Can lead to social isolation and lower self-esteem.

Somatotypes – AO3 Justify a Suitable Body Type for a Sport

- Ectomorph: Slim, lean body, suited for endurance sports (e.g., long-distance running).
- Mesomorph: Muscular, athletic build, ideal for strength-based sports (e.g., sprinting, bodybuilding).
- Endomorph: Larger, rounder build, suited for sports that require strength and power (e.g., rugby, shot put).

Energy – Measurement and Requirements for Males/Females

Energy Requirements: Men typically need more calories due to higher muscle mass.

 Measuring Energy: Energy intake is measured in kilocalories (kcal). The daily requirement varies based on age, gender, and activity level.

Balanced Diet – Reasons for

- Helps maintain energy levels, muscle growth, and immune function.
- Reduces the risk of chronic diseases like diabetes, heart disease, and obesity.

Proportion of Diet for Fat, Protein, and Carbs

- Carbs: 45-65% of daily intake (for energy).
- Protein: 10-35% of daily intake (for muscle repair and growth).
- Fat: 20-35% of daily intake (for energy and hormone production).
- Vitamins & Minerals: Important for immunity, energy production, and bone health.

Dehydration – Definition and Effects - AO3 - Evaluate the consequences

- Dehydration: When the body loses more water than it takes in.
- Effects on Performance: Dehydration can lead to reduced stamina, concentration, and heat-related illnesses. Affects physical and mental performance.

Classification of Skill – AO3 Justify Classification for different Sports

- Open Skill: Unpredictable, changing environment (e.g., football).
- Closed Skill: Predictable, stable environment (e.g., gymnastics).
- Complex Skill: Requires decision-making and high focus (e.g., swimming starts).
- Simple Skill: Basic, requires little decision-making (e.g., running).

Goals - Performance/Outcome

- Performance Goals: Focus on improving technique (e.g., improving a swimming stroke).
- Outcome Goals: Focus on results (e.g., winning a race).
- Evaluation: Both types are important for different reasons, with performance goals leading to gradual improvement and outcome goals driving motivation.

Use of SMART Targets to Improve Performance

- Specific, Measurable, Achievable, Realistic, Time-bound.
- Example: "I will run 5 km in under 30 minutes in 6 weeks."

Basic Information Processing Model

- Input: Information from the environment (e.g., seeing a ball coming toward you).
- Decision Making: Deciding how to react (e.g., deciding to jump or catch). LTM/STM
- Output: The action taken (e.g., jumping or catching).
- Feedback: Information about the performance (e.g., coach's comment).

4 Types of Guidance

- Visual: Demonstrating the skill (good for beginners).
- Verbal: Explaining the skill (good for all levels).
- Manual: Physically guiding the performer (helpful for beginners).
- Mechanical: Using equipment to help (good for beginners in technical sports).

Feedback – Positive/Negative, Extrinsic/Intrinsic, Knowledge of Results/Knowledge of Performance

- Positive Feedback: Encourages improvement (e.g., "Great job!").
- Negative Feedback: Corrects mistakes (e.g., "Try to bend your knees more").
- Extrinsic Feedback: Comes from an external source (e.g., coach).
- Intrinsic Feedback: Comes from the performer (e.g., feeling of success or failure).

Mental Preparation – Arousal

- Arousal: The level of alertness or readiness to perform.
- Inverted U Theory: A moderate level of arousal leads to the best performance. Too little or too much arousal can negatively affect performance.

Controlling Arousal with Stress Management Techniques

Techniques: Breathing exercises, visualization, progressive muscle relaxation.

Direct/Indirect Aggression

- Direct Aggression: Physical harm to another person (e.g., a tackle in football).
- Indirect Aggression: Harm to an object to gain an advantage (e.g., breaking a racket in tennis).

- Introverts: Prefer less stimulating, individual sports (e.g., swimming).
- Extroverts: Thrive in social, team sports (e.g., football, basketball).

Motivation – Intrinsic/Extrinsic

- Intrinsic Motivation: Doing something for personal satisfaction (e.g., self-improvement in sport).
- Extrinsic Motivation: Doing something for external rewards (e.g., trophies, money).

Engagement Patterns in Physical Activity – Different Social Groups

- Social groups (e.g., age, gender, socio-economic status) influence participation in physical activities. Young people may engage in sports like football, while older people may prefer walking or swimming.
- AO3 Justify the links between engagement patterns and the different social groups

Commercialisation – Define and the 'Golden Triangle'

- Commercialisation: The process of making sports a business.
- Golden Triangle: The relationship between sport, media, and sponsors.

Sponsorship & Media – Definition & Types

- Sponsorship: A company supporting an athlete or event financially in exchange for promotion.
- Media: Broadcasting sports events, advertising, and promoting athletes.

Sponsorship & Media - AO3 Justify Positive & Negative Impacts

- Positive: Raises money for the sport, increases visibility.
- Negative: Can lead to the commercialization of sport, affecting its integrity.

Technology – **AO3 Justify Positive & Negative Impacts** on *performer/sport/official/spectator/sponsor*

- Positive: Improves performance through data analysis, training apps, and equipment.
- Negative: Can lead to over-reliance on technology and reduce the human aspect of sport.

Conduct of Performers - Etiquette

 Following proper conduct and respect for others in a sport, such as fair play, respect for opponents, and following rules.

Spectator Behaviour – Positive/Negative Influences

- Positive: Spectators can motivate athletes.
- Negative: Disruptive behavior, such as booing, can affect the atmosphere and the performers.

Hooliganism – Reasons for It and Strategies to Combat

- Reasons: Frustration, aggression, and social issues.
- Strategies: More policing, crowd control, and improved fan behavior campaigns.
- AO3 Evaluate the effectiveness of the strategies

Prohibited Substances (Drugs)

- Positive Effects: Increased performance (e.g., blood doping).
- Negative Effects: Health risks like organ damage and addiction.
- AO3 Evaluate the benefits/ side effects for different sports performers

Blood Doping – How It Occurs and Effects

- How It Happens: Increasing the number of red blood cells in the body, usually through transfusions or drugs.
- Positive Effects: Increased oxygen capacity.
- Negative Effects: Increased risk of heart problems, strokes, and infections.